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Where We’ve Gone
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Where We’ve Gone
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The Scale of  the Solar System
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Humans haven’t gone beyond the Earth bar



How Far Humanity Has Reached
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Where We Are
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Getting There is Hard
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Getting There is Hard
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Getting There is Hard – But Fun!
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Working on MarCO in the CubeSat Lab



Haverford Foundation

• Entered Haverford in 5th grade
– Dr. Turner’s science class astronaut 

reports

• Flying Club 7th and 8th grade
– Self-teaching how to fly flight simulators

• Flight instruction
– First flight at Brandywine airport August, 

2003

– Solo on 16th birthday

– Checkride passed on July 25, 2008

• Tailored classes toward STEM
– Ms. Cleffi’s biology class

– Ms. O’Brien’s physics classes

– Mr. Maley’s electronics class

– Mr. Rooney’s engineering class
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Freshman Year



High School – College Transition

• Creating a new reputation
– A “reset” on how others 

perceive you

• Getting used to “low” grades
– High grades in high school 

don’t guarantee high grades in 
college

• Homesickness and feeling 
isolated
– Everyone is making the 

transition together

• Study hall periods can grow 
to become whole days
– Time management becomes 

increasingly crucial
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Freshman Year



SPHERES Motivation

• Develop a platform to demonstrate and validate metrology, control, 
autonomy, and artificial intelligence algorithms for distributed satellite 
systems (DSS)

• Demonstrate different configurations of  DSS
– Rendezvous and docking algorithms

• Servicing missions

• Space assembly

– Autonomous formation flight
• Optical telescopes (Stellar Imager),

space based radar

• Approved by SERB May 2008:
Fractionated Spacecraft (DARPA)

• Provide a representative environment
for the demonstrations
– 6 DOF, long duration micro gravity

If you can’t bring the space environment to the 

laboratory, take the laboratory into space
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SPHERES Satellite Overview
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SPHERES Docking Ports
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SDP Drive Train
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• Motor actuates docking/undocking 

through mechanical linkages

• Drivetrain is fully visible when SDP 

enclosure is removed



Attachment to Satellites
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Directly to SPHERES Halo

Via Standoff  to SPHERES Satellite



Halo System Overview
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Reduced Gravity Testing
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Science Accomplished

➔Inertial ID multiple hardware 

configurations

➔Plume impingement 

characterization of  the Halo 

structure

➔Global metrology performance 

with a Halo in 6DOF

➔ Docking repeatability and 

Controllability of  several 

aggregated systems



Sample RGA Thruster Pulse Analysis
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Accelerometer response through a single parabola

Raw accelerometer and gyro 

data of  a thruster pulse with a 

moving average filter

Final acceleration and angular 

velocity response to thruster 

pulse



Accomplishments of  TS078: 

SDP Checkout
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➢ Docked calibration and hardware checkout

➢ Mass ID of  newly integrated systems

➢ Global metrology-only docking attempt

➢ Camera and metrology docking attempt to integrate the new sensor during approach

➢ Demonstration of  reconfigurable controller for both translational and rotational maneuvers



➢ Record a satellite tumbling 

about its intermediate axis in 

6DOF microgravity for 

educational use and development 

of  new computer vision tracking 

algorithms

➢ Demonstrate improved 

reconfigurable controller

during docked translation and 

rotation maneuvers

➢ Demonstrate repeatable 

docking approaches using both 

global metrology and the docking 

port camera

Accomplishments of  TS081: 

SDP Science 1
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Motivation: Mission Applications

• Future missions requiring soft docking with potentially tumbling Targets
– Spacecraft Servicing [Guo, Wang, Reintsema, Fredrickson, Horsham]

– Spacecraft Assembly [Barnhart, Guo, Chu, Stroupe]

– Active Debris Removal (ADR) [Lampariello, Hillenbrand, JSC, Reintsema]
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Problem Statement

• Scenario:

– A rigid, uncooperative, on-orbit target is observed to be tumbling 

– Want to deorbit the target with autonomous chaser satellite

– Risk of  damaging chaser and generating more debris

• Objective: 

– Improve design of  chaser for soft docking to target object with uncertain 

properties

– Reduce the risks through the use of  1g testing to help validate 0g simulations

24



Challenges Faced in ADR Scenario

• Urgency requires computational efficiency

• Minimize fuel consumption 

• Target properties are initially uncertain
[Riesing, Gottlieb, Vallado, Titov, Schueller, Simon]

• Adhere to constraints (e.g. contact velocity and 
Chaser acceleration)
[Steigler]

• Coupled translations and rotations
[Hess, Evans]
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Chaser/Target 

Matching

Simulation 

Validation

Trajectory 

Generation

Goal: Soft docking with uncooperative, naturally tumbling, 

rigid bodies with uncertain properties



Key Definitions

• “Docking” refers to docking, capture, 

or berthing

– Occur quickly compared to orbital period

• “Target” refers to a rocket body 

requiring soft contact docking

• “Chaser” refers to an ADR satellite 

capable of  thrusting in any direction

• “Synchronous” refers to approaching 

along the Target’s docking axis 

to maintain Target lock
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SDTT: Synchronous Docking 

to a Tumbling Target



Efficient Parameterization of  a Trajectory

• Specify 𝑃 = [𝑡𝑓 , 𝑟0, 𝑟𝑓 , 𝐽, 𝜔]
properties for various tumbles

• Consider Δ𝑉 expenditure for 
translation

• Parameterized the optimal 
trajectory using four parameters
𝑟 𝑡 = 𝑏1𝑒

−𝑐1𝑡 + 𝑏2𝑒
−𝑐2𝑡
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Thesis Contribution: Identified that a reduced parameterization of  

the optimal trajectory exists to enable rapid optimization

Example Optimal 2-Term Exponential

Δ𝑉 Percent 100 102

Computation Time

Percent
100 23

Example: flat spin 𝑃 = [𝑡𝑓 = 60s, 𝑟0 = 10m,

𝑟𝑓 = 1m, 𝐽 = [1 1 1],𝜔 = 0 0 5 deg/s]
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How Acceleration Terms Interact to Create 

Minimum Δ𝑉 Trajectory

Regime 2: 𝜟𝑽 = 𝚫𝑽𝒐𝒑𝒕 Regime 3: Δ𝑉 = 2.9Δ𝑉𝑜𝑝𝑡Regime 1: 𝛥𝑉 = 7.8Δ𝑉𝑜𝑝𝑡
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Thesis Contribution: Found that minimum fuel trajectories 

match tangential and radial acceleration 28

33s: 2.40m/s 240s: 5.01m/s1s: 18.83m/s

• Varying 𝑡𝑓 enables identification 
of  operation regimes based on 
acceleration terms near fuel 
minimum

1s 33s 240s

• Radial: 𝑎𝑐𝑒𝑛𝑡𝑟𝑖𝑝𝑒𝑡𝑎𝑙 = 𝜔 × (𝜔 × 𝑟) and 𝑎𝑙𝑖𝑛𝑒𝑎𝑟 = ሷ𝑟

• Tangential: 𝑎𝐶𝑜𝑟𝑖𝑜𝑙𝑖𝑠 = 2𝜔 × ሶ𝑟 and 𝑎𝑎𝑛𝑔𝑢𝑙𝑎𝑟 = ሶ𝜔 × 𝑟



Trajectory Generation from 

Flat Spin Differential Equation

Optimal 2-Term Exponential Matched Acceleration

Δ𝑉 2.247m/s 2.262m/s 2.248m/s

Computation Time

Percent
100 25 0.02
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• Flat spin with constant spin rate:

– 2𝜔 ሶ𝑟+ ሶ𝜔𝑟 = 𝜔2𝑟 + ሷ𝑟

– General solution 𝑟 𝑡 = 𝑐1e
𝜔𝑡 + 𝑐2𝑡e

𝜔𝑡

• Boundary conditions to solve for parameters

– 𝑟0, 𝑡0 , 𝑟𝑓 , 𝑡𝑓 →

e𝜔𝑡0 𝑡0e
𝜔𝑡0

e𝜔𝑡𝑓 𝑡𝑓e
𝜔𝑡𝑓

𝑐1
𝑐2

=
𝑟0
𝑟𝑓

• Flat spin trajectory generation reduces computation 
cost to solving for two constants without 
optimization or propagation

Flat spin matched acceleration case requires only two 

parameters to be found using boundary conditions



Differential Equation to Find 

Optimal Trajectory
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• Generic tumble case:

– Define state 𝑥 =
𝑟
ሶ𝑟

– Then: ሶ𝑥 =
03×3 𝐼3×3
𝐶3×3 𝐵3×3

𝑥 = 𝐴 𝑡 𝑥 (LTV), with

𝐵3×3, = 2

0 −𝜔3 𝜔2

𝜔3 0 −𝜔1

−𝜔2 𝜔1 0

𝐶3×3 =

𝜔2
2 + 𝜔3

2 − ሶ𝜔3 − 𝜔1𝜔2 ሶ𝜔2 − 𝜔1𝜔3

ሶ𝜔3 − 𝜔1𝜔2 𝜔1
2 + 𝜔3

2 − ሶ𝜔1 − 𝜔2𝜔3

− ሶ𝜔2 − 𝜔1𝜔3 ሶ𝜔1 − 𝜔2𝜔3 𝜔2
2 + 𝜔1

2

Each propagation of  the LTV system takes 0.05% the time of  the full optimization

Time dependence 

requires numerical 

propagation

• Boundary conditions specified for forward or backward propagation as 

piecewise LTI system

– ሶ𝑟0, 𝑟0, 𝑟𝑓 for forward propagation

– ሶ𝑟𝑓 , 𝑟0, 𝑟𝑓 for backward propagation



Lunar Flashlight Mission
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• Lunar Flashlight spacecraft
– 6U CubeSat 

– Launching as secondary 
payload on SLS EM-1

– Approximately 8 month 
mission, final 2 months are 
lunar science orbits

– Payload consists of  laser 
diode and onboard 
spectrometer to measuring 
reflected light

• Collaboration between JPL 
and Marshall Spaceflight 
Center (Propulsion, Science)



Lunar Flashlight within Deployer
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Lunar Flashlight 

Ejected from Deployer
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Lunar Flashlight in

Deployed Configuration
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Lunar Flashlight’s XACT-50
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Testing the Lunar Flashlight ACS

36

LF XACT
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Y

X
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(Data Collection Computer)

Y

X
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Jitter Testing (Z-Axis) of  Lunar 

Flashlight Reaction Wheels
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• Calibrated sensors are necessary to ensure that reported values 

can be trusted – run separate calibration tests

Calibration of  “Truth Sensors”

38

X-Configuration Y-Configuration Z-Configuration

15 Hz 20 Hz 100 Hz



MarCO

39



The MarCO Satellite

40



The MarCO Satellite
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MarCO
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MarCO
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MarCO Deployment
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Concluding Remarks

• Space Systems Engineering

– Challenging and fun career requiring technical focus

– The results of  your work will be Firsts!

• General Recommendations

– Find support groups – family, friends, faculty

– Beyond-classwork experience is highly valued

– Networking is crucial

– It’s OK to be unsure about your trajectory right now
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Thank You!

46Photo: JPL taken by Kat Riesing, piloted by David Sternberg; 2500msl, 2015-07-12

Feel free to contact me at david.c.sternberg@jpl.nasa.gov



Contributions

1. Robust, fuel optimal, low order and computationally efficient trajectories for a representative 
range of  SDTT

a) Identified that a reduced parameterization of  the optimal trajectory exists to reduce the computational 
complexity of  deriving the optimal trajectory for rapid optimization

b) Found that the fuel minimizing trajectories match the radial and tangential accelerations
c) Based upon Finding 1b, formulated a differential equation whose solution results in the optimal approach 

trajectory
d) Assessed the applicability of  the Multiple Models for improving robustness to plausible state uncertainties

2. A process that allows Chaser capability to be evaluated against a family of  potential tumbling 
Targets

a) Defined feasibility space as the set of  properties that enable successful SDTT
b) Process to identify the Target parameters that a given Chaser can accommodate as well as design a Chaser to 

accommodate a user-specified set of  Target parameters
c) Since Target properties are uncertain, developed a sensitivity analysis tool to determine dominant contributors 

to Chaser design parameter variability

3. A process for improving a simulation’s ability to predict a satellite’s on-orbit performance 
using constrained 1-g testbeds

a) Created degree of  freedom constraints to enable unconstrained simulations to provide motion predictions in 
reduced degree of  freedom environments

b) Validated the simulation of  ground performance by modeling energy dissipation for air bearing systems and 
through a comparison to ground data

c) Validated the simulation of  flight performance through a comparison to flight data

47

SDTT: Synchronous Docking to Tumbling Targets
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Challenges Faced in ADR Scenario

• Urgency requires computational efficiency

• Minimize fuel consumption 

• Target properties are initially uncertain
[Riesing, Gottlieb, Vallado, Titov, Schueller, Simon]

• Adhere to constraints (e.g. contact velocity and 
Chaser acceleration)
[Steigler]

• Coupled translations and rotations
[Hess, Evans]
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Chaser/Target 

Matching

Simulation 

Validation

Trajectory Generation:

Develop robust, fuel optimal, 

low order and computationally 

efficient trajectories for SDTT



Sources of  Target Uncertainty

60

(Gomez Martinez, et al., 2016)

A Priori State Estimation

Through Remote Sensing

In Situ State Estimation

State 𝑃0 with uncertainty bounds

State 𝑃0 + 𝛿 with reduced uncertainty 

and adapt or implement robust trajectory

𝜔

𝜔

𝜔

Approach with Adapted or 

Robust Synchronous Trajectory



Trajectory Generation from

General Tumble Differential Equation

61

Unidirectional Precession Looping PrecessionCuspidial Precession

Thesis Contribution: Formulated a differential equation 

whose solution results in the optimal trajectory



Trajectory Generation from

General Tumble Differential Equation
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Unidirectional Precession Looping PrecessionCuspidial Precession

Thesis Contribution: Formulated a differential equation 

whose solution results in the optimal trajectory

𝛥𝑉 difference: 2% 𝛥𝑉 difference: 4% 𝛥𝑉 difference: 3%



Multiple Model Approach for

Robust Trajectory Generation

• Sacrifices nominal performance for robustness over a range of  

uncertainty [MacMartin, Liu]
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min
𝑇

෍
𝑖=1

𝑛 Δ𝑉𝑖(𝑀, 𝑇)𝑤𝑖

𝑊

𝑇 = 𝑇1, … 𝑇𝑝 trajectory parameters

𝑀 = 𝑚1, … ,𝑚𝑛 , 𝑚𝑖 = 𝑡𝑓 , 𝑟0, 𝑟𝑓 , 𝜔
𝑇 , 𝐽𝑇 models

𝑊 = 𝑤1, … , 𝑤𝑛 weights with probability 𝑤𝑖 = 𝑃 𝑚𝑖

Thesis Contribution: Formulated the Multiple Model approach for 

robust trajectory generation for plausible property uncertainties

• Example: axisymmetric body, 

varying 𝐽 = 𝑋 𝑋 1 ′

– MM trained on 

𝑋 = {3.5, 5, 6.5}

• MM provides flattened Δ𝑉
cost curve across inertia ratio 

range

|𝜔| = 5deg/s, ෝ𝜔0 =[0 0.1 1]

𝑟0 =10m to 𝑟𝑓 =1m, 𝑡𝑓 =5min



• Narrower range of  possible 

inertia ratios

• Broad range of  possible 

inertia ratios

64

(Gomez Martinez, et al., 2016)

A Priori State Estimation

Through Remote Sensing

In Situ State Estimation

State 𝑃0 with uncertainty bounds

State 𝑃0 + 𝛿 with reduced uncertainty 

and adapt or implement robust trajectory

𝜔

𝜔

𝜔

Approach with Adapted or 

Robust Synchronous Trajectory

Developed robust, fuel 

optimal, low order and 

computationally efficient 

trajectories for a representative 

range of  SDTT

Robustness to Target Uncertainty



Chaser/Target Matching:

Defining Methodology

65

• Problem Statement: Determine the feasibility of  

docking to a Target with uncertain properties

Target Selection

Known Unknown
C

h
as

er
 D

es
ig

n

Known

Can the proposed docking

mission be conducted 

successfully?

Given a known Chaser, what are 

the possible Targets with which a 

docking can be achieved?

Unknown

In order to dock to Target, 

to which parameters is the 

Chaser most sensitive?

How well must the Target be 

defined for a Chaser with 

minimum required margins to be 

low risk?

• Feasibility space: The set of  parameter values over 

which a given Chaser can achieve a soft dock

Target Parameters 𝑟𝑓 𝜔 𝐽

Chaser Parameters 𝑇 𝑟0
Performance Metrics 𝑎𝑚𝑎𝑥 Δ𝑉 𝑡𝑓 𝑣𝑓
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Design Optimum 

Trajectory for Mean

Evaluate Across 

Target Samples

Map Feasibility 

Space

Determine Chaser 

Requirements

Assess Sensitivity 

to Uncertainty

Target Selection

Known Unknown
C

h
as

er
 D

es
ig

n

Known

Can the proposed docking

mission be conducted 

successfully?

Given a known Chaser, what are 

the possible Targets with which a 

docking can be achieved?

Unknown

In order to dock to Target, 

to which parameters is the 

Chaser most sensitive?

How well must the Target be 

defined for a Chaser with 

minimum required margins to be 

low risk?

• Feasibility space: The set of  parameter values over 

which a given Chaser can achieve a soft dock

Target Parameters 𝑟𝑓 𝜔 𝐽

Chaser Parameters 𝑇 𝑟0
Performance Metrics 𝑎𝑚𝑎𝑥 Δ𝑉 𝑡𝑓 𝑣𝑓

Chaser/Target Matching:

Defining Methodology

• Problem Statement: Determine the feasibility of  

docking to a Target with uncertain properties

Define Target 

Statistics



Chaser/Target Matching:

Defining Target Statistics

• Consider uncertainty in:

• Parameters that describe motion of  docking 
port: 𝑟𝑓 , 𝜔, 𝐽

• Knowledge of  initial rendezvous location: 𝑟0

• Example case with uniform distributions:

• 𝑟𝑓 = 1 ± 0.1 m

• 𝜔 = 5 ± 1 deg/s

• 𝐽 = [1 1 1]

• 𝑟0 = 10 ± 0.25 m
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Define Target 

Statistics

Design Optimum 

Trajectory for Mean

Evaluate Across 

Target Samples

Map Feasibility 

Space

Determine Chaser 

Requirements

Assess Sensitivity 

to Uncertainty

𝑟0

𝜔

𝑟𝑓

Target space defined by level of  uncertainty



Chaser/Target Matching:
Evaluate Trajectory for Mean on All Target Samples

68

Optimal Trajectory 

to Mean Target

Target Space

Trajectory 

Propagator

Performance

Metrics

Nondimensionalization:
𝑎𝑚𝑎𝑥

𝜔2𝑟𝑓
,
Δ𝑉

𝜔𝑟𝑓
,
𝑟0
𝑟𝑓

Assessment of  how optimal trajectory for mean 

Target performs across range of  uncertainty

Design Optimum 

Trajectory for Mean

Evaluate Across 

Target Samples

Map Feasibility 

Space

Determine Chaser 

Requirements

Assess Sensitivity 

to Uncertainty

Define Target 

Statistics



Chaser/Target Matching:

Mapping Feasibility Space

• Shape identifies demands on Chaser satellite from Target’s 
uncertainty while using fuel optimal trajectory

• Pareto points represent minimum Chaser performance 
requirements

69

Thesis Contribution: Mapped feasibility space to study 

Chaser design requirements

Design Optimum 

Trajectory for Mean

Evaluate Across 

Target Samples

Map Feasibility 

Space

Determine Chaser 

Requirements

Assess Sensitivity 

to Uncertainty

Define Target 

Statistics



Chaser/Target Matching:

Determining Chaser Requirements

70

Thesis Contribution: Mapping between Target property 

and Chaser design spaces

Design Optimum 

Trajectory for Mean

Evaluate Across 

Target Samples

Map Feasibility 

Space

Determine Chaser 

Requirements

Assess Sensitivity 

to Uncertainty

• Market Analysis: Identifying the Target samples to which 
an existing Chaser can feasibly dock
– Input: Chaser design

– Output: Percentage of  Targets

Define Target 

Statistics



Chaser/Target Matching:

Determining Chaser Requirements

• Market Capture: Determining the Chaser design for 
docking with a desired percentage of  the Target samples
– Input: Percentage of  Targets

– Output: Chaser requirements
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Thesis Contribution: Mapping between Target property 

and Chaser design spaces

Design Optimum 

Trajectory for Mean

Evaluate Across 

Target Samples

Map Feasibility 

Space

Determine Chaser 

Requirements

Assess Sensitivity 

to Uncertainty

Define Target 

Statistics



Chaser/Target Matching:

Sensitivity to Uncertainty

• Compute sensitivity metrics based on simulation 
outputs at selected trajectory
– Latin Hypercube sampling

– Output Metrics
• Δ𝑉 required

• Relative contact velocity

• Time until docking

• Docking success
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Variable Distribution

Initial Separation Distance (r0) 0.6m

Docking Port Distance (rf) 0.251m

Initial Position U[𝐦𝐞𝐚𝐧 ± 𝟓]cm

Initial Linear Velocity Stationary

Initial Attitude [1;0;0;0]

Initial Angular Rate U[𝐦𝐞𝐚𝐧 ± 𝟓]deg/sec

Target Satellite Mass 5.984kg

Metrology Loss Level U[3, 50]%

Metrology Noise Standard Deviation 3.3𝑥10−3m

Thesis Contribution: Developed a sensitivity analysis tool for 

determining the Target properties that most affect the Chaser design

Design Optimum 

Trajectory for Mean

Evaluate Across 

Target Samples

Map Feasibility 

Space

Determine Chaser 

Requirements

Assess Sensitivity 

to Uncertainty

Define Target 

Statistics



Chaser/Target Matching:

Sensitivity to Uncertainty

Design Optimum 

Trajectory for Mean

Evaluate Across 

Target Samples

Map Feasibility 

Space

Determine Chaser 

Requirements

Assess Sensitivity 

to Uncertainty

Define Target 

Statistics
• Compute sensitivity metrics based on simulation 

outputs at selected trajectory
– Latin Hypercube sampling

– Output Metrics
• Δ𝑉 required

• Relative contact velocity

• Time until docking

• Docking success

Thesis Contribution: Developed a sensitivity analysis tool for 

determining the Target properties that most affect the Chaser design
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Challenges Faced in ADR Scenario

• Urgency requires computational efficiency

• Minimize fuel consumption 

• Target properties are initially uncertain
[Riesing, Gottlieb, Vallado, Titov, Schueller, Simon]

• Adhere to constraints (e.g. contact velocity and 
Chaser acceleration)
[Steigler]

• Coupled translations and rotations
[Hess, Evans]
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Chaser/Target 

Matching

Simulation Validation:

Developed a process for improving 

a simulation’s ability to predict a 

satellite’s on-orbit performance

Trajectory 

Generation
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Validating 0-g Simulation 

through Ground Hardware Testing
Create 0-g  

Simulation

Impose 1-g 

Constraints

Collect 1-g 

Data

1-g Data 

Correlation

Remove 1-g 

Constraints

0-g Data 

Correlation

Validated 

1-g and 0-g 

Simulation

Problem Statement: 

Obtain validated models of  the 1-g and 0-g operating 

environments and of  the Chaser’s hardware and software

Requires:

• Constraining satellite dynamics

• Ground environment modeling

• Simulation tuning using ground data (dynamics and 

environment) and flight data (environment)

Example:

JPL Small Satellite Dynamics Testbed
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0-g Simulation Validation with 1-g Testbeds:

Create 0-g Simulation

Figure adapted from SSDT Model Certification Review

JPL Small Satellite Dynamics Testbed’s Simulation

Create 0-g  

Simulation

Impose 1-g 

Constraints

Collect 1-g 

Data

1-g Data 

Correlation

Remove 1-g 

Constraints

0-g Data 

Correlation

Validated 

1-g and 0-g 

Simulation



• Propagate motion in LAB frame
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𝑎𝑆𝐶 = ሶ𝑣𝑆𝐶 2,1 ; 0 − റ𝑔

𝑣𝐿𝐴𝐵 = 𝑞𝑆𝐶
𝐿𝐴𝐵∗ ⊗𝑣𝑆𝐶 ⊗𝑞𝑆𝐶

𝐿𝐴𝐵

LAB

lin

LAB

Couette vF =

0-g Simulation Validation with 1-g Testbeds:

Impose Ground Constraints
Create 0-g  

Simulation

Impose 1-g 

Constraints

Collect 1-g 

Data

1-g Data 

Correlation

Remove 1-g 

Constraints

0-g Data 

Correlation

Validated 

1-g and 0-g 

Simulation

LAB Frame SC Frame

• Define reference frames for 

constrained operation

• Determine environmental effects

– Couette dissipation for air bearings

𝐹𝐶𝑜𝑢𝑒𝑡𝑡𝑒
𝐿𝐴𝐵 Couette dissipation

𝜇𝑙𝑖𝑛 Couette constant

𝑣𝐿𝐴𝐵 Velocity in LAB frame

𝑎𝑆𝐶 Projected acceleration 

in SC frame

ሶ𝑣𝑆𝐶 Velocity derivative in 

SC frame

റ𝑔 Gravity vector

𝑞𝑆𝐶
𝐿𝐴𝐵 Quaternion from SC 

to LAB frame

𝑣𝑆𝐶 Velocity in SC frame
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Data acquisition from 1-g testbed captures 

operating dynamics and environment 

0-g Simulation Validation with 1-g Testbeds:

Perform 1-g Testing
Create 0-g  

Simulation

Impose 1-g 

Constraints

Collect 1-g 

Data

1-g Data 

Correlation

Remove 1-g 

Constraints

0-g Data 

Correlation

Validated 

1-g and 0-g 

Simulation

Collect 1-g data to determine parameters of  1-g environment 

Translation of  Planar Sled on Flat Floor
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Translation of  Planar Sled on Flat Floor

Correlation of  1-g environmental models with 1-g test  

data enables validation of  Chaser hardware and software

0-g Simulation Validation with 1-g Testbeds:

1-g Model-Data Correlation
Create 0-g  

Simulation

Impose 1-g 

Constraints

Collect 1-g 

Data

1-g Data 

Correlation

Remove 1-g 

Constraints

0-g Data 

Correlation

Validated 

1-g and 0-g 

Simulation

Tune simulation using acquired 1-g environmental parameters
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Software

Actuators

Sensors

Dynamics

Environment

0-g    1-g

1-g 

Attitude

Constraints

1-g 

Translation 

Constraints

Attitude 

Dynamics
Translation 

Dynamics

Outputs

Removing 1-g constraints enables validated models of  

Chaser hardware and software to be simulated in 0-g

0-g Simulation Validation with 1-g Testbeds:

Remove 1-g Constraints
Create 0-g  

Simulation

Impose 1-g 

Constraints

Collect 1-g 

Data

1-g Data 

Correlation

Remove 1-g 

Constraints

0-g Data 

Correlation

Validated 

1-g and 0-g 

Simulation
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0-g Simulation Validation with 1-g Testbeds:

0-g Model-Data Correlation

Correlate environmental models with available on-orbit data 

SSDT Flight Environmental Models

• Disturbance Forces

– Aerodynamic drag

– Solar radiation pressure

• Disturbance Torques

– Aerodynamic drag

– Solar radiation pressure

– Gravity gradient

– Magnetic field

Create 0-g  

Simulation

Impose 1-g 

Constraints

Collect 1-g 

Data

1-g Data 

Correlation

Remove 1-g 

Constraints

0-g Data 

Correlation

Validated 

1-g and 0-g 

Simulation
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Quadrino, 2014

Day
1 2 3 4 5 6

0-g Simulation Validation with 1-g Testbeds:

0-g Model-Data Correlation
Create 0-g  

Simulation

Impose 1-g 

Constraints

Collect 1-g 

Data

1-g Data 

Correlation

Remove 1-g 

Constraints

0-g Data 

Correlation

Validated 

1-g and 0-g 

Simulation

• Lower solar activity leads to less 

dense atmosphere and slower 

orbit decay rate

• Tuned simulation atmospheric 

model approximates TLE data

Correlate environmental models with available on-orbit data 
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Validated models of  flight environment and ground-

validated Chaser hardware and software models

0-g Simulation Validation with 1-g Testbeds:

0-g Model-Data Correlation
Create 0-g  

Simulation

Impose 1-g 

Constraints

Collect 1-g 

Data

1-g Data 

Correlation

Remove 1-g 

Constraints

0-g Data 

Correlation

Validated 

1-g and 0-g 

Simulation



84Figure adapted  from SSDT Model Certification Review

Thesis Contribution: Improved method of  validating a 

0-g simulation using constrained 1-g hardware testing

Validated 0-g Simulation 

through Ground Hardware Testing
Create 0-g  

Simulation

Impose 1-g 

Constraints

Collect 1-g 

Data

1-g Data 

Correlation

Remove 1-g 

Constraints

0-g Data 

Correlation

Validated 

1-g and 0-g 

Simulation


